
Data and File
Structures

Sumeet Sharma

Terms & Conditions for Buying E-Book
 The User must Read & Accept the Terms and Conditions (T&C) carefully before clicking on the accept option for Buying the Online Soft Copy of E-books. Under this Particular Facility you may buy only the Online Soft Copy of E-books, no Hard Copy or Printed Copy shall be provided under this facility.
 These E-Books are valid for 365 days online reading only (From the Date of Purchase) and no kind of Downloading, Printing, Copying, etc. are allowed in this facility as these products are just for Online Reading in your Mobile / Tablet / Computers.
 All the online soft copy E-books given in this website shall contain a diffused watermark on nearly every page to protect the material from being pirated / copy / misused, etc.
 This is a Chargeable Facility / Provision to Buy the Online Soft Copy of E-books available online through our Website Which a Subscriber / Buyer may Read Online on his or her Mobile / Tablet / Computer. The E-books content and their answer given in these Soft Copy provides you just the approximate pattern of the actual Answer. However, the actual Content / Study Material / Assignments / Question Papers might somewhat vary in its contents, distribution of marks and their level of difficulty.
 These E-Books are prepared by the author for the help, guidance and reference of the student to get an idea of how he/she can study easily in a short time duration. Content matter & Sample answers given in this E-Book may be Seen as the Guide/Reference Material only. Neither the publisher nor the author or seller will be responsible for any damage or loss due to any mistake, error or discrepancy as we do not claim the Accuracy of these solution / Answers. Any Omission or Error is highly regretted though every care has been taken while preparing these E-Books. Any mistake, error or discrepancy noted may be brought to the publishers notice which shall be taken care of in the next edition. Please consult your Teacher/Tutor or refer to the prescribed & recommended study material of the university / board / institute / Govt. of India Publication or notification if you have any doubts or confusions before you appear in the exam or Prepare your Assignments before submitting to the University/Board/Institute.
 Publisher / Study Badshah / shall remain the custodian of the Contents right / Copy Right of the Content of these reference E-books given / being offered at the website www.studybadshah.com.
 The User agrees Not to reproduce, duplicate, copy, sell, resell or exploit for any commercial purposes, any portion of these Services / Facilities, use of the Service / Facility, or access to the Service / Facility.
 The Price of these E-books may be Revised / Changed without any Prior Notice.
 The time duration of providing this online reading facility of 365 days may be alter or change by studybadshah.com without any Prior Notice.
 The Right to accept the order or reject the order of any E-books made by any customer is reserved with

www.studybadshah.com only.
 All material prewritten or custom written is intended for the sole purpose of research and exemplary purposes only. We encourage you to use our material as a research and study aid only. Plagiarism is a crime, and we condone such behaviour. Please use our material responsibly.
 In any Dispute What so ever Maximum Anyone can Claim is the Cost of a particular E-book which he had paid to Study Badshah company / website.
 If In case any Reader/Student has paid for any E-Book and is unable to Access the same at our Website for Online Reading Due to any Technical Error/ Web Admin Issue / Server Blockage at our Website www.studybadshah.com then He will be send a New Link for that Particular E-Book to Access the same and if Still the Issue is Not Resolved Because of Technical Error/ Web Admin Issue / Server Blockage at our website then His Amount for that Particular Purchase will be refunded by our website via PayTM.
 All the Terms, Matters & Disputes are Subjected to "Delhi" Jurisdiction Only.

NEERAJ
PUBLICATIONS

1. Analysis of Algorithms .. 1
2. Arrays .. 11
3. Lists ... 23
4. Stacks .. 48
5. Queues .. 59
6. Trees ... 69
7. Advanced Trees ... 83
8. Graphs ... 100
9. Searching .. 124

10. Sorting ... 132
11. Advanced Data Structures .. 150
12. File Structures .. 159

CONTENTS
S.No. Page

Sample Preview

of

The Chapter

Published by:

NEERAJ

PUBLICATIONS
www.neerajbooks.com

Neeraj
Publications

DATA AND
FILE STRUCTURES

Since the beginning of civilization in the world,
man has been in a continuous process of inventing
different methods for expressing data in the form of
text or pictures, depending upon the requirements. This
led to the subject of data structures. The basic
terminology and concepts will be defined in this chapter
with relevant examples. We shall also discuss in detail
regarding the various operations that can be applied to
these data structures. Along with, we shall try to
understand the terms like algorithm, its complexity and
how to select an algorithm and data structure for a given
problem.

Q. 1. What do you understand by Algorithms?
Ans. As we know that the field of computer science

centers around writing programs to solve various
problems in different domains. A program is a product
of both the data structures and an algorithm.

An algorithm is a well defined sequence of steps
required for solving a particular problem.
The concept of using algorithms is to study and

provide the solution for a problem by using a computer.
It not only specifies the sequence in which the steps
are to be performed, but once these steps are performed
in the prescribed sequence on a sample data representing
the instance of the problem, the expected results are
also obtained.

Moreover, while working on these algorithms two
terms: Complexity and time-space tradeoff, come into
picture. While processing the data, the time and space
it uses are the key measures of the efficiency of an
algorithm. On the other hand, the complexity of an
algorithm is the function that gives the running time
and/or space in terms of the input size.

Example 1. : Let us take an example of finding a
factorial of a number which will be an input. The input
to the algorithm that solves the given problem will be a
natural number. The output is also a positive number
which is the factorial of that number given as input.
You can write a number of algorithms, but one such is
given here for your reference.
Algorithm Find FACTORIAL
Step 1. Read a positive number “x”.
Step 2. Assign the value 1 to the variable “f”.
Step 3. Assign the value “x” to the variable “n”.
Step 4. If “x” is less than zero then jump to Step 10.
Step 5. If “x” is equal to zero then jump to Step 11.
Step 6. If “x” is greater than zero then perform steps

7 to 9 else goto Step 11.
Step 7. Assign the value “x” multiplied with “f” to

the variable “f”.
Step 8. Assign the value “x” minus 1 to the variable

“x”.

www.neerajbooks.com

www.neerajbooks.com

www.neerajbooks.com

Neeraj
Publications

Step 9. Go to Step 6.
Step 10. Print “The input number is negative” and goto

Step 12.
Step 11. Print “Factorial of number n is f”.
Step 12. Stop.

The above steps mentioned in an algorithmic form,
are so simple that anyone carrying out these steps
precisely knows what to do in each step. While carrying
out these steps of an algorithm on some input data, one
must encounter some step containing a statement like
“Stop” after a finite number of steps.

The following are the properties which an
algorithm should have:

(a) Input: For each and every algorithm there are
some input data which is externally supplied
to the algorithm.

(b) Output: The algorithm should at least specify
one output as a result.

(c) Finiteness: If the instructions or steps of an
algorithm are carried out, then for all possible
combinations of input data, the algorithm
should be able to terminate after a finite
number of steps. It should strictly include a
“Halt” or a “Stop” statement.

(d) Definiteness: The steps should be quite clear
and least ambiguous.

(e) Effectiveness: The steps of an algorithm must
be simple. By simple we mean that even if a
layman tries to carry out the steps, he should
be able to mechanically do that using a pencil
and a paper without applying any intelligence.

Q. 2. Write down the guidelines of writing
algorithms.

Ans. There are some guidelines for writing
algorithms, which are given below:

(a) Expressing an algorithm: The basic step is
to express the problem in terms of an algorithm. It is
the “definiteness” property of an algorithm that
demands clarity and avoid ambiguity at each step
specified. These steps should be expressed in a natural
language (like English). However sometimes it becomes
difficult to express in natural language. Therefore some
pictorial descriptions of an algorithm are also used.
These pictorial descriptions are known as Flow Charts.

(b) Designing an algorithm: Problem solving still
remains an innovative exercise, i.e. creating an
algorithm for solving a problem is an art. There is no
preset methodology to create an algorithm. There can

be n number of methods of creating an algorithm for
the same problem. However, new techniques and
strategies have evolved over a period of time which
help us gain useful ideas which can be applied to devise
an algorithm for a new problem.

(c) Analyzing an algorithm: After the design stage
of an algorithm, there are two key points which should
be dealt with properly. One is the validation of the
algorithm and other is evaluating the complexity of the
algorithm. It is the foremost important issue that an
algorithm yields correct results. This is also called as
“program solving” or “program verification”. Another
important topic is to determine the amount of time and
storage an algorithm may require for an execution.

Q. 3. What do you understand by Complexity?
Ans. Complexity refers to the rate at which the

required storage or consumed time grows as a function
of the problem size. The absolute growth depends on
the machine used to execute the program, the compiler
used to construct the program, and many other factors.
We would like to have a way of describing the inherent
complexity of a program, independent of machine/
compiler considerations. This means that we must not
try to describe the absolute time or storage needed. We
must instead concentrate on a proportionality approach,
expressing the complexity in terms of its relationship
to some known function. This type of analysis is known
as Asymptotic Analysis. It may be noted that we are
dealing with complexity of an algorithm not that of a
problem. For example, the simple problem could have
high order of time complexity and vice versa.

All decision problems fall into sets of comparable
complexity, called complexity classes.

The complexity class P is a set of decision problems
that can be solved by deterministic machine in
polynomial time. This class corresponds to set of
problems which can be effectively solved in the worst
cases. We will consider algorithms belonging to this
class for analysis of time complexity. Not all algorithms
in these classes make practical sense as many of them
have higher complexity.

The complexity class NP is a set of decision
problems that can be solved by a non-deterministic
machine in polynomial time. This class contains many
problems like Boolean satisfiability problem,
Hamiltonian path problem and the Vertex cover
problem.

www.neerajbooks.com

www.neerajbooks.com

www.neerajbooks.com

Neeraj
Publications

Q. 4. What do you understand by Asymptotic
Analysis?

Ans. Asymptotic analysis is based on the idea that
as the problem grows, the complexity can be described
as a simple proportionality to some known function.
This idea is incorporated in the “Big O”, “Omega”,
“Theta” notation for asymptotic performance.

The notations like “little Oh” are similar in spirit
to “Big Oh”; but are rarely used in computer science
for asymptotic analysis.

The objective of analysis of an algorithm is to find
its efficiency. Efficiency is dependent on the resources
that are used by the algorithm. For example:

 CPU Utilization (Time complexity)

 Memory Utilization (Space complexity)

 Disk Usage (I/O)

 Network Usage (bandwidth)

There are four important attributes to an algorithm.
They are:

 Performance: How much time/memory/disk/
network bandwidth is actually used when a
program is run. This depends on the algorithm,
machine, compiler, etc.

 Complexity: How do the resource
requirements of a program or algorithm scale
(the growth of resource requirements as a
function of input). In other words, what
happens to the performance of an algorithm,
as the size of the problem being solved gets
larger and larger? For example, the time and
memory requirement of an algorithm which
computes the sum of 1000 numbers is larger
than the algorithm which computes the sum
of 2 numbers.

 Time Complexity: The maximum time required
by a Turing machine to execute on an input of
length n.

 Space Complexity: The amount of storage
required by an algorithm varies with the size
of the problem being solved. The space
complexity is normally expressed as an order
of magnitude of the size of the problem, e.g.,
O(n2) means that if the size of the problem (n)
doubles then the working storage (memory)
requirement will become four times.

As we know that there will be many different
algorithms for solving the same problem. Accordingly,
a data structure can be represented in a number of ways
and there may be number algorithms to implement an
operation on the said data structure. In such situations,
it is required to compare two algorithms to implement
an operation on the said data structure. Your comparison
or analysis of the two algorithms should reveal some
quantitative metrics regarding the execution of the
algorithms. In this context we will mainly discuss the
following.

Q. 5. What is Time-Space Trade Off?

Ans. Time-Space Trade off: Space in this context
means storage required in addition to the space required
to store the input data. Time is the computer time
required for the execution of an algorithm, but it again
depends upon the size of input. Thus time complexity
of an algorithm is often a function input size, “n”.
Moreover the same algorithm may take different time
to execute for different inputs having the same size.
The different times are measured in terms of best case,
worst case and an average case. The best case
complexity of an algorithm is a measure of minimum
time that an algorithm will require for its execution.
However the worst case complexity of an algorithm is
a measure of maximum time that an algorithm will
require for its execution.

However, it is very difficult to compute the
exact time taken by an algorithm for its execution.
There are several important factors which influence
the time required by an algorithm. Accordingly,
the programmer has to tradeoff between the size
of the input and time taken for the execution of the
algorithm. Sometimes where the time is foremost
issue the programmer decides in time’s favor, however
in other cases the programmer may decide in size’s
favor.

When we write a program that finds the maximum
elements in a list of an array, the primary operation of
an algorithm is to perform comparison operations.
However, if the program is to sort an array of n elements,
then one more operation other than comparison
operation becomes more important is the exchange
operation. This step of identification of the primary
operations of an algorithm guides us in separating the
analysis of an algorithm from its implementation.

www.neerajbooks.com

www.neerajbooks.com

www.neerajbooks.com

Neeraj
Publications

Example 1.2: Let us consider the following
function:

void addsum()
{

int a, b, c;
c = a + b;

}
The most important operation that the above

function is set to perform is addition of the values of
variables a and b and assign it as the value of the variable
c. The number of addition that it performs
is 1.

Example 1.3: Let us consider another function:
void nestedaddsum(int n)

{
int a, b, c;
int i, j;
for(i=0; i<n; i++)

for(j=0; j<n; j++)
c = a + b;

}
The number of assignment operations the function

performs are:
 i=1,n (j=1,n (1)) = i=1,n (n) = n2

Example1.4: Let us consider another function:
void anothernestedaddsum(int n)

{
int a, b, c;
int i, j;

for(i=0; i<n; i++)
for(j=i; j<n; j++)

{
if (j%2 == 0)

break;

else
c = a + b;

}
}

In the above function, when control enters into the
inner j loop, the value of i is either even or odd. Hence
j is initialized with either an odd or an even value. If j is
initialized to an odd value, the assignment operation
takes place. But before the next operation of j, where it
becomes an even values the loop is broken. However,
if j is assigned an even number, therefore no assignment
operation takes place.

The most important issue is that algorithm in its
entirety is not taken up for complexity analysis. Instead
some key operations, which will reveal the
computational complexity of an algorithm, are
considered. Another issue which is also important is
that many mathematical tools including mathematical
induction are to be rigorously used to carry out the
complexity analysis of algorithms.

Q. 6. What is –Notation?
Ans. This notation bounds a function to within

constant factors. We say f(n) = (g(n)) if there exist
positive constants n0, c1 and c2, such that to the right of
n0 the values of f(n) always lies between c1g(n) and
c2g(n), both inclusive. Following the figure displays
the function f(n) and g(n) where f(n) = (g(n)). We
will say that the function g(n) is asymptotically tight
bound for f(n).

For example, let us show that the function f(n) =
(1/3)n2 – 4n = (n2).

www.neerajbooks.com

www.neerajbooks.com

www.neerajbooks.com

	MCS-21-EM-Data and File Structures content
	2. Chapter
	cp
	c1

