
(An ISO 9001 : 2008 Certified Company)

Price

New Edition

Reference Book
Including

Solved Question Papers

By:

E-mail Website

If you want to Buy NEERAJ BOOKS by Post then please order your complete requirement at the "ORDER FORM"
Link Given at our Website www.neerajignoubooks.com by filling each & every details in the fields mentioned in the
Order Form to avoid any mistake in sending the books. For the details of the Course, Name of the Books & Price etc.
you may Surf our website or you may also send us a FAX Letter mentioning the complete requirement & your details to
our FAX No. 011-23285501.
No Need To Pay In Advance if the Order Form is Filled by You. The Books shall be sent to you Through V.P.P. Post
Parcel (All The Payment including the Price of the Books & the Postal Charges are to be Paid to the Postman or to your
Post Office at the time when You take the Delivery of the Books & they shall Pass the Value of the Goods to us.
We usually dispatch the books nearly within 7-8 days after we receive your Order and it takes nearly 7-8 days in the
postal service to reach your Destination (in total it takes atleast 15 days).

E-mail: Website:

(An ISO 9001 : 2008 Certified Company)

S.No. Chapter Page

1. Elementary Algorithmics 1

2. Some Pre-requisities and Asymptotic Bounds 14

3. Basics of Analysis 26

4. Divide-And-Conquer 54

5. Graph Algorithms 65

6. Dynamic Programming 82

7. Greedy Techniques 88

8. Models for Executing Algorithms-I: FA 100

Question Paper—June, 2016 (Solved) 1-6

Question Paper—June, 2015 (Solved) 1-7

Question Paper—June, 2014 (Solved) 1-7

Question Paper—December, 2013 (Solved) 1-7

Question Paper—December, 2012 (Solved) 1-7

Question Paper—December, 2011 (Solved) 1-8

DESIGN AND ANALYSIS
OF ALGORITHMS

S.No. Chapter Page

9. Models for Executing Algorithms-II: PDFA & CFG 106

10. Models for Executing Algorithms-III : TM 113

11. Algorithmically Unsolvable Problems 126

12. Complexity of Algorithms 132

Sample Preview

of the

Solved

Sample Question

Papers

Published by:

NEERAJ

PUBLICATIONS
www.neerajbooks.com

www.neerajbooks.com

Neeraj
Publications

Q. 1. (a) Explain five characterisitcs of an
algorithm briefly.

Ans. Ref.: See Chapter-1, Page No. 2,
‘Characteristics of an Algorithm’.

(b) Write and explain recursive algorithm to

find the factorial of any given number 0n .

Ans. Ref.: See Chapter-1, Page No. 6,
‘Recursion’ and Page No. 7, ‘Factorial Function’.

(c) Explain the importance of asymptotic
analysis for running time of an algorithm with the
help of an example.

Ans. Ref.: See Chapter-2, Page No. 20, ‘Well
Known Asymptotic Functions and Notations’.

(d) Briefly describe Chomsky classification for
Grammars.

Ans. Ref.: See Chapter-9, Page No. 110,
‘Chomsky Classification of Grammars’.

(e) Using Dijkstra’s algorithm, find the
minimum distances off all the nodes from node ‘a’
which is taken as the source node, for the following
graph:

a b

ed

c f

1

2

3

4

1

Ans. Using Dijkstra’s algorithm to find out
minimum distance of all the nodes from node ‘a’.

(Solved)

Time: 3 hours] Maximum Marks: 100

Note: Question no. 1 is compulsory. Attempt any three questions from the rest.

8

2

3

4

5

7

Possible minimum path
a d®
a b c e f® ® ® ®

to cover all the possible nodes with minimum
distances from node ‘a’.

a

b

b

c

e

f

1

2
1

3

2

(f) “The best-case analysis is not as important
as the worst-case analysis of an algorithm.” Yes
or No? Justify your answer with the help of an
example.

Ans. Ref.: See Chapter-3, Page No. 42,
‘Amortised Analysis’.

Q. 2. (a) Explain how greedy approach is
useful to find the solution to fractional knapsack
problem.

Ans. There are n items in a store. For i =1,2, . .
. , n, item i has weight w

i
> 0 and worth v

i
> 0. Thief

can carry a maximum weight of w pounds in a
knapsack. In this version of a problem the items can
be broken into smaller piece, so the thief may decide
to carry only a fraction x

i
 of object i, where 0 £

³

www.neerajbooks.com

www.neerajbooks.com

www.neerajbooks.com

Neeraj
Publications

x
i
 £ 1. Item i contributes x

i
w

i
 to the total weight

in the knapsack, and x
i
v

i
 to the value of the load.

In Symbol, the fraction knapsack problem can
be stated as follows:

maximize nS
i=1

x
i
v

i
 subject to constraint nS

i=1
x

i
w

i

£ W
It is clear that an optimal solution must fill the

knapsack exactly, for otherwise we could add a
fraction of one of the remaining objects and increase
the value of the load. Thus in an optimal
solution nS

i=1
x

i
w

i
 = W.

Greedy-fractional-knapsack (w, v, W)
FOR i =1 to n

 do x[i] =0
weight = 0

while weight < W
 do i = best remaining item
 If weight + w[i] £ ” W
 then x[i] = 1
 weight = weight + w[i]
 else
 x[i] = (w - weight) / w[i]
 weight = W
return x

Analysis
If the items are already sorted into decreasing

order of v
i
/ w

i,
then the while-loop takes a time

in O(n);
Therefore, the total time including the sort is

in O(n log n).
If we keep the items in heap with largest v

i
/w

i
at

the root. Then
creating the heap takes O(n) time
while-loop now takes O(log n) time (since
heap property must be restored after the
removal of root)

Although this data structure does not alter the
worst-case, it may be faster if only a small number of
items are need to fill the knapsack.

(b) Solve the following recurrence relation:

1 2 0n n nf f f

such that 0 0f and 1 1f .

Ans. 1 2n n nf f f- -- - =0

and the initial conditions are

0f = 0, 1f = 1

by using the recurrence repeatly until obtaining a
explicit close form formula. For instance consider the
following recurrence relation.

nx = 1nrx - , where 0n ³

0x = A

By using the recurrence repeatedly, we get

nx = 1nrx -

= 2
2nr x -

nx = 3
3nr x -

= ...

= 0
nr x

= A nr

hence the solution is A n
nx r=

(c) Explain Turning Machine (TM) as a
computer of functions, with the help of an example.

Ans. Ref.: See Chapter-10, Page No. 117,
‘Turning Machine as a Computer of Functions’.

Q. 3. (a) Using Prim’s algorithm, find a
minimal spanning tree for the graph given below:

a b

e

d

c

f

1

2

3

4

5

g

2

6

2

2

3

Ans. Using Prim’s algorithm to find minimal
spanning tree for the graph. (by using starting node
a).

a b

e

d

c

f g

2

2

nx r=

www.neerajbooks.com

www.neerajbooks.com

Sample Preview

of

The Chapter

Published by:

NEERAJ

PUBLICATIONS
www.neerajbooks.com

www.neerajbooks.com

Neeraj
Publications

Elementary Algorithmics

INTRODUCTION

Since the earth came into existence, living being
are busy in solving problem. What do you mean by
problem? Problem is any unacceptable/undesirable
situation and it could be harmful for one and profitable
for another e.g. enchroachment is profitable for public
and problem for government. If there exist a solution
for any problem then there would be a sequence of
activities called process should be there. A solution of
any problem is just merely a transition from undesirable
to desirable state.

Technically, the set of instruction or description in
a particular notation of the process is termed as
algorithm. An algorithm is a finite step-by-step well
defined instructions of the sequence of the activities
that constitute a process of getting the desired outputs
from the given inputs. The raw material needed at the
time of beginning is referred to as input and the resulting
entity is referred as output.

An algorithm, when designed in a fashion that can
be understood and executed by a computer system is
called a computer program/program.

CHAPTER AT A GLANCE

EXAMPLE OF AN ALGORITHMS
Take a example of well known algorithm for finding

greatest common divisor (G.C.D.) of two natural
numbers.

Euclid's algorithm for finding G.C.D. two natural
numbers m & n:

E1: { Find remainder } Divide m by n and let r be
the remainder (new) {e have 0 < r < n}

E2: { Is r zero } If r = 0,the algorithm terminates
and n is the answer otherwise.

E3: { Interchange } Let the new value of m be the
current value of r. Go back to step E1.

The termination of the above method is sure, since
m and n is used to reduce in each iteration and r must
become zero in finite number of repetitions of steps
E1, E2 and E3.

The Euclid's algorithm in a pseudo–code notation
which is closer to a programming language.

Algorithm GCD Euclid (m, n)
{This algorithm computes the

greatest common divisor of the two
given positive integers.}

DESIGN AND ANALYSIS
OF ALGORITHMS

INTRODUCTION TO ALGORITHMICS

www.neerajbooks.com

www.neerajbooks.com

www.neerajbooks.com

Neeraj
Publications

begin {of algorithm}
while n  0 do
begin {of while loop}

r  m mod n;
{a new variable is used to

store the remainder which is obtained
by dividing m by n ,with 0 < r, m}

m  n;
{ the value of n is assigned as new

value of m; but at this stage value of n
remains unchaged}

m  r;
{ the value of r becomes the new value

of n and the value of r remains unchanged}
end {of while loop}

return (n).
end;{of algorithm}

PROBLEMS AND INSTANCES
We know that the roots of a general quadratic

equation
ax2 + bx + c = 0 a  0 ...(1)

are given by the equation

x =
2– b± b – 4ac

2c
...(2)

where a, b, c may be any real number except the
restriction that a  0.

Now take a = 3, b = 4, c = 1
then the equation (1) becomes 3x2 + 4x + 1=0
using equation (2) x =–1/2 or –1

Considering the above discussion, finding out the
roots of general quadratic equation ax2 + bx + c = 0 is
called a problem whereas finding out the roots of
particular equation 3x2 + 4x + 1= 0 is called instance or
question of the problem (general).

Depending upon the problem, any problem can
have minimum one instance and maximum infinite
instance. For some problems, there may be only one
instance/question corresponding to each of the
problems. For example, the problem of finding out the
largest integer that can be stored or can be arithmetically
operated on, in a given computer, is a single–instance
problem.
CHARACTERISTICS OF AN ALGORITHM

There are five important characteristics of an
algorithm that should be considered while designing any
algorithm for any problem.

1. Finiteness: An algorithm should terminate in
finite number of steps and each step must finish in finite
amount of time.

2. Definiteness (no ambiguity): Each step of an
algorithm should be clearly n precisely define n there
should not be any ambiguity.

Example of definiteness:
A program fragment is given below:
x  1
toss a coin
if the result is head then x  3 else

x  4
in the above program, all the steps would be carried

out effectively but there is no definiteness since there
are two possible values of x i.e., 1 and 3/4.

3. Inputs: An algorithm must have zero or more
but must be finite number of inputs.

Example of zero input algorithm:
Print the ASCII code of each of the letter in the

alphabet of the computer system.
4. Output: An algorithm must have at least have

one desirable outcome i.e., output.
5. Effectiveness: An algorithm should be effective.

Effective means that each step should be referred as
principle and should be executing in finite time.

Example of not effectiveness: Find exact value
of e using the following formula:

e = 1 + 1/(1!) +1/(2!) + 1/(3!)+………….
and add it to x.

It is not effective since it requires summation of
infinite terms. Therefore it takes infinite time hence not
effective.
PROBLEMS, AVAILABLE
TOOLS AND ALGORITHM

To understand the available tools, we would
consider some alternative algorithms for finding the
product m*n of two natural numbers m and n.
First Algorithm

The usual method of multiplication, is to multiply
each digit of one number to each digit of another number
using multiple table as shown below:

1 2 3
1 2

2 4 6
1 2 3 ×
1 4 7 6

Second Algorithm
In this algorithm, we don't have multiplication table,

we are having only arithmetic capability like:

www.neerajbooks.com

www.neerajbooks.com

www.neerajbooks.com

Neeraj
Publications

(a) that of counting are
(b) that of comparing two integers w.r.t. "less than

or equal to" relation with the above facilities. one
possible algorithm would require two storage device,
one of the storage device is used to accommodate marks
upto n, the multiplier and other to accommodate marks
m*n, the resultant product.

The algorithm are as follows:
Step 1: Initially make a mark of first portion on

the paper.
Step 2: For each new mark on the first portion,

make a new mark on the second portion.
Step 3: Count the number of marks in first portion.

If the count equals n, then count the number
of all marks in the second portion and
return the last count as the result. However,
if the count in the first portion is less than
n, then make one more mark in the first
portion and goto step 2.

There are several other logic to design the algorithm
for multiplication of the two natural numbers depending
upon the available tools.
BUILDING BLOCKS OF AN ALGORITHM

There are three basic actions and corresponding
instructions form the basis of any imperative language.
Basic Actions and Instructions

(a) Assignment of value: Any value to a variable
can be assigned as
Variable  expression;

– Variable could be any combination of alphabets
and numeric

– Expression could be any fixed value or the
expression of calculation
e.g. x  y + z

– Every time the statement execute, the new
value assigned to the variable.

(b) Second basic action is to read value of
variables. It can be done with the help of the
command

Read (i. j,……)
(c) The third basic action is to write values of

some variables. It can be done with the help of
the command

Write (i, j…..)
If any sequence of character is given in the quotes

inside the bracket of write command then it is print as
it is, e.g.

Write (“xyz”)
The outcome of algorithm would be xyz.

Control Mechanism and Control Structure
In order to understand algorithm, it is must to know

and to understand the mechanism. There are three basic
control mechanism.

(a) Direct Sequencing: In this, the execution of
instruction is same as the sequence of instruction is
written in the program text. Unless instructions are given
to the contrary, the modules are executed in the obvious
sequence. The sequence may be presented explicitly,
by means of numbered steps, or implicitly, by the order
in which the modules are written as shown in figure.

 Algorithm Flowchart


Module A Module A


Module B Module B


Module C Module C


(b) Selection: Selection logic employs a number
of conditions which lead to a selection of one out of
several alternative modules. The structures which
implement this logic are called conditional structures
or If structures. For clarity, we will frequently the end
of such a structure by the statement.

[End of If structure.]
or some equivalent. These conditional structures fall
into three types, which are discussed separately.

(a) Single alternative: This structure has the
form

If condition, then:
[Module A]
[End of If structure]
The logic of this structure is shown in figure (a)

below. If the condition holds, then Module A, which
may consist of one or more statements, is executed;
otherwise Module A is skipped and control transfers to
the next step of the algorithm.

No No
Condition Condition

Yes Yes

Module A Module A

Module B

(b)(a)

www.neerajbooks.com

www.neerajbooks.com

www.neerajbooks.com

Neeraj
Publications

(b) Double alternative: This structure has the form
If condition, then:

[Module A]
Else:

[Module B]
[End of If structure]

The logic of this structure is shown in figure (b)
above. If the condition holds, then module A is executed;
otherwise module B is executed.

(c) Multiple alternatives: This structure has the
form:

If condition(1), then:
[Module A

1
]

Else if condition(2), then:
[Module A

2
]

.

.
Else if condition(M), then:

[Module A
m
]

Else:
[Module B]

[End of if structure.]
The logic of this structure allows only one of the

modules to be executed specifically. Either the module
which follows the first condition which holds is
executed, or the module which follows the final. Else
statement is executed. In practice, there will rarely be
more than three alternatives.

Example: Suppose we are to write a program
segment that converts % of marks to grades as follows:

% of marks(M) grade(G)
80  M A
60  M < 80 B
50  M < 60 C
40  M < 50 D
M < 40 F

Then the corresponding notation may be
Case M of

80…100: 'A'
60….79: 'B'
50….59: 'C'
40….49: 'D'
 0….39: 'F'

Where M is an integer variable.
Example: The solutions of the quadratic equation

ax2 + bx + c = 0.
Where a  0, are given by the quadratic formula.

x =
2 4

2

b b ac

c

- ± -
.

The quantity D = b2 – 4ac is called the discriminant
of the equation. If D is negative, then there are no real
solutions. If D = 0, then there is only one (double) real
solutions, x  – b/2a. If D is positive, the formula gives
the two distinct real solutions. The following algorithm
finds the solutions of a quadratic equation.

Algorithm: (Quadratic equation): This algorithm
inputs the coefficients A, B, C of a quadratic equation
and outputs the real solutions, if any.

Read: A, B, C.

Set D: B2 -4AC.

If D > 0, then:

Set x
1
: =(-B+D)/2A and x

2
: (-B-

D)/2A.
Write: x

1
, x

2
.

Else if D=0, then:

Set x: = -B/2A.

Write: 'UNIQUE SOLUTION', x.

Else:

Write: 'NO REAL SOLUTIONS'

{end of if structure}

End.

(c) Repetition: There are some situation occurs
when there is a requirement of execution of the same
task repeatedly. Then we use this technique. This
technique refers to either of two types of structures
involving loops. Each type begins with a Repeat
statement and is followed by a module, called the body
of the loop. For clarity, we will indicate the end of the
structure by the statement

[End of loop.]

or some equivalent.

Each type of loop structure is discussed separately.
The repeat–for loop uses an index variable, such as K,
to control the loop. The loop will usually have the form:

Repeat for K=R to S by T:

[Module]

[End of loop.]

The logic of this structure is shown in figure (a)
below. Here R is called the initial value, S the end value
or test value, and T the increment. Observe that the body
of the loop is executed first with K=R, then with K=R+T,
then with K=R+2T, and so on. The cycling ends when
K > S. The flowchart assumes that the increment T is
positive; if T is negative, so that K decreases in value,
then the cycling ends when K < S.

www.neerajbooks.com

www.neerajbooks.com

	content
	1. Sample Question Paper
	pp
	june16

	2. Chapter
	cp
	1

