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Q. 1. (a) What is an algorithm? What are
its desirable characteristics?

Ans. Ref.: See Chapter-1, Page No. 1,
‘Introduction’.

(b) What are asymptotic notations? Explain
any two asymptotic notations with suitable
example for each.

Ans. Ref.: See Chapter-2, Page No. 26,
‘Asymptotic notation’.

(c) Solve the following recurrence relation
using substitution method:

 T n = 2T 
2

n
n

    

Ans. Ref.: See Chapter-4, Page No. 53,
‘Example 4’.

(d) Write and explain binary search
algorithm with an suitable example.

Ans. Ref.: See Chapter-6, Page No.
84-85, Q. No. 6.

(e) Explain Depth First Search (DFS)
algorithm with an suitable example.

Ans. Ref.: See Chapter-7, Page No. 94-95,
‘Depth First Search’.

(f) What is Dynamic Programming
approach of problem solving ? Write the steps
involved in dynamic programming.

Ans. Ref.: See Chapter-9, Page No. 138,
‘Dynamic Programming Approach’.

See Also: Here are the general steps involved
in solving a problem using dynamic programming:

1. Identify the problem and define the
objective: Clearly understand the problem and

what you are trying to achieve. Identify the
parameters or variables involved.

2. Formulate a recursive solution: Express
the problem in terms of smaller subproblems.
Determine how the solution to the main problem
can be broken down into solutions to smaller
subproblems. This step involves defining a
recursive relationship or recurrence relation.

3. Define the base cases: Specify the base
cases or smallest subproblems that can be solved
directly without further decomposition. These base
cases serve as the termination condition for the
recursion.

4. Design the memorization table: Create a
data structure (often a table or array) to store the
solutions to subproblems. Initialize the table with
default values or values from the base cases.

5. Fill in the memorization table: Use a
bottom-up or top-down approach to populate the
memorization table. In a bottom-up approach,
solve subproblems in a systematic order, starting
from the smallest subproblems and working
upwards towards the main problem. In a top-down
approach (also known as memorization),
recursively solve subproblems and store their
solutions in the memorization table for future use.

6. Compute the solution to the main
problem: Once the memorization table is filled,
extract the solution to the main problem from the
table. This solution will be available in the last cell
or specific cells of the memorization table,
depending on the problem.
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Time: 3 Hours ] [  Maximum Marks: 100
(Weightage : 70%)

Note : Question No. 1 is compulsory. Attempt any three questions from the rest.
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Q. 1. (a) Write a mathematical definition of
big omega (). For the functions defined by
f(n) = 3n3 + 2n2 + 1 and g(n) = 2n2 + 3, verify
that f(n) =  (g(n)).

Ans. Ref.: See Chapter-2, Page No. 26, ‘Big-
Omega() Notation;,

Also Add: To verify that f(n) = (g(n)) for the
functions def ined by f(n)=3n3+2n2+1 and
g(n)=2n2+3, we need to find constants C and n0

that satisfy the  condition.
First, let’s simplify the functions:
f(n) = 3n3 + 2n2 + 1
g(n) = 2n2 + 3
Now, let’s find constants C and n0 such that

f(n)  Cg(n) for all n > n0.
We can rewrite the inequality as: 3n3 + 2n2 + 1

 C(2n2 + 3)

Simplify the right side: 3n3 + 2n2 + 1  2Cn2

+ 3C
Now, let’s choose C = 1 and n0 = 1. We can

verify that for all n > 1:

3n3 + 2n2 + 1  2n2 + 3
Therefore, we have shown that f(n) = (g(n))

for the given functions f(n) and g(n). This means
that the function f(n) grows at least as fast as g(n)
for sufficiently large n, establishing a lower bound
relationship between the two functions.

(b) Explain the principle of optimality in
dynamic programming, with the help of an
example.

Ans. Ref.: See Chapter-9, Page No. 134,
‘Principle of Optimality’.

DESIGN AND ANALYSIS OF ALGORITHM

Time: 3 Hours ] [  Maximum Marks: 100
(Weightage : 70%)

Note : Question No. 1 is compulsory. Attempt any three questions from the rest.

December – 2022
(Solved)

(c) Apply a master method to give the tight
asymptotic bounds of the following
recurrences:

(i) T(n) = 4T (n/2) + n2.
Ans. Ref.: See Chapter-4, Page No. 58,

Q. No. 4 (b).
(ii) T(n) = 9T (n/3) + n.
Ans. Ref.: See Chapter-4, Page No. 56,

‘Example-1’.
(d) Run the Prim’s algorithm on the

following graph. Assume that the root vertex
is a .

Derive the complexity of the algorithm.
Ans. Ref.: See Chapter-8, Page No. 115-116,

‘Prim’s Algorithm Example’.
Also Add: Prim’s algorithm is used to find the

minimum spanning tree (MST) of a weighted,
undirected graph. The complexity of Prim’s
algorithm depends on the data structures and
implementations used. Prim’s algorithm can be
implemented using various data structures such
as priority queues, adjacency matrices, or
adjacency lists. Here, we’ll consider the most
common implementation using a priority queue.

Let’s define some terms before deriving the
complexity:

V is the number of vertices in the graph.
E is the number of edges in the graph.
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INTRODUCTION

An Algorithm is a f inite sequence of
instructions, each of which has a clear meaning
and can be performed with a finite amount of effort
in a finite length of time. In addition, every algorithm
must satisfy the following characteristics or
properties:

Input: there are zero or more quantities, which
are externally supplied;

Output: at least one quantity is produced;
Definiteness: each instruction must be clear

and unambiguous;
Finiteness: if we trace out the instructions of

an algorithm, then for all cases, algorithm will
terminate after a finite number of steps.

Effectiveness: every instruction must be
sufficiently basic that it can in principle be carried
out by a person using only pencil and paper. It is
not enough that each operation be definite, but it
must also be feasible.

CHAPTER AT A GLANCE

EXAMPLE OF AN ALGORITHM
The Greatest Common Divisor (GCD) of two

non-negative integers m and n (not-both-zero),
denoted by GCD (m, n), is defined as the largest
integer that divides both m and n evenly, i.e., with
a remainder of zero:

Euclid’s Algorithm: It is based on applying
repeatedly the equality GCD (m, n) = GCD (n, m
mod n),  where m mod n is the remainder of the
division of m by n, until m mod n is equal to 0.
Since, GCD (m, 0) = m, the last value of m is also

the greatest common divisor of the initial m and n.
GCD (60, 24) can be computed as follows: GCD
(60, 24) = GCD (24, 12) = GCD (12, 0) = 12.

Euclid’s algorithm for computing GCD
(m, n) in simple steps:

Step 1: If n = 0, return the value of m as the
answer and stop; otherwise, proceed to Step 2.

Step 2: Divide m by n and assign the value of
the remainder to r.

Step 3: Assign the value of n to m and the
value of r to n. Go to Step 1.

Euclid’s Algorithm: For computing GCD
(m, n) expressed in pseudo-code

ALGORITHM Euclid_GCD(m, n)
//Computes GCD(m, n) by Euclid’s algorithm
//Input: Two non-negative, not-both-zero

integers m and n
//Output: Greatest common divisor of m and n
while n  0 do
r  m mod n
m  n
n  r
return m.

BASICS BUILDING BLOCKS OF ALGORITHMS
An algorithm follows a procedure to write the

solution of a problem. It is designed with five basic
building blocks, namely: Sequencing, selection,
iteration and recursion.

Sr. N. Building Block Action

1. Sequencing Step by step actions

2. Selection Decision

3. Iteration Repetition or Loop

4. Procedure Set of instructions

5. Recursion Function calling itself

Basics of an Algorithm and its Properties
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Sequencing, Selection and Iteration
Sequencing: An algorithm is a step-by-step

process, and the order of those steps are crucial
to ensure the correctness of an algorithm.

Selection: Algorithms can use selection to
determine a different set of steps to execute, based
on a Boolean expression.

Iteration: Algorithms often use repetition to
execute steps a certain number of times or until a
certain condition is met.
Procedure and Recursion

(i) Procedure: An algorithm defines the
specific steps required to solve a problem. A
procedure is a recipe or method for accomplishing
a result such as solving a problem or performing
a task. A procedure is usually considered to have
the following characteristics. It consists of a finite
sequence of discrete steps.

For example: We can define GCD (a,b) as a
procedure/function only once and can call it a
number of times in a main function with different
values of a and b.

The general format for defining a procedure
might look like this:

Procedure <Name>(<parameter-list>)() [: <
type>]

<declarations>
<sequence of instruction expected to be

occurred repeatedly>
end;
(ii) Recursion: Generally speaking, recursion

is the concept of well-defined self-reference.
We recall from Mathematics, one of the ways

in which the factorial of a natural number n is
defined:

factorial (1) = 1
factorial (n) = n* factorial (n – 1)

By definition
factorial (4) = 4 * factorial (3).

Again by the definition
factorial (3) = 3  factorial (2)

Similarly
factorial (2) = 2* factorial (1)

And by definition
factorial (1) = 1

Substituting back values of factorial (1),
factorial (2) etc., we get factorial (4) = 4.3.2.1
= 24, as desired.

This definition suggests the following
procedure/algorithm for computing the factorial of
a natural number n:

Procedure factorial (n)
fact: integer;

begin
fact  1
if n equals 1 then return fact
else begin
fact  n  factorial (n – 1)
return (fact)
end;

end;
Definition: A procedure, which can call itself,

is said to be recursive procedure/algorithm. For
successful implementation of the concept of
recursive procedure, the following conditions
should be satisfied:

(i) There must be in-built mechanism in the
computer system that supports the calling
of a procedure by itself, e.g, there may be
in-built stack operations on a set of stack
registers.

(ii) There must be conditions within the
definition of a recursive procedure under
which, after finite number of calls, the
procedure is terminated.

(iii) The arguments in successive calls should
be simpler in the sense that each
succeeding argument takes us towards the
conditions mentioned in (ii).

A SURVEY OF COMMON RUNNING TIMES
When solving a problem we are faced with a

choice among algorithms. The basis for this can
be any one of the following:

(i) We would like an algorithm that is easy to
understand, code and debug.

(ii) We would like an algorithm that makes
efficient use of the computer’s resources,
especially, one that runs as fast as
possible.

Measuring the running time of a program
The running time of a program depends on

factors such as:
1. The input to the program.
2. The quality of code generated by the

compiler used to create the object program.

www.neerajbooks.com
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3. The nature and speed of the instructions
on the machine used to execute the
program, and

4. The time complexity of the algorithm
underlying the program.

Following are the generalized form of running
time for the algorithms:

1. Constant Time (O(k)): If the running time
does not depend on the input size (n), then it is
known as constant running time. It can be
represented as T(n) = O(k), where k is a constant.

T( ) = kn

k

Input size ( )n
Fig. T(n) = O (k)

2. Linear Time O(kn): If the time complexity
is at most a constant factor times the size of the
input, then it is known as linear time complexity
and is presented as T(n) = O(kn), where k is a
constant or O(n).

T( ) = n kn

T( ) = n kn

Input size ( )n

Fig. T( ) = O( )n n

3. Logarithmic Time (log(n)): If the time
complexity of an algorithm is proportional to the
logarithm of the input size, i.e., every time the size
of input remains half of that of previous iteration,
then it is known as logarithmic time complexity and
depicted as O(log n) time. For example, running
time of binary search algorithm is O(log n).

T( ) = log( )n n

T( ) = log( )n n

Input size ( )n

Fig. T( ) = log( )n n

Quadratic Time: (T(n)= O(n)2): It occurs
when the algorithm is having a pair of nested loops.
The outer loop iterates O(n) time and for each
iteration the inner-loop takes O(n) time. So, we
get O(n2) by multiplying these two factors of n.

T( ) = n n2

Input size ( )n
2

4. Cubic Time: (T(n)= O(n3)): It often occurs
when the algorithm is having there nested loops,
and each loop has a maximum n iterations. Let us
have one interesting example which requires cubic
time complexity. Suppose, we are given n sets:
S1, S2,...Sn. Size of each set is n (i.e., each set is
having n elements).

T( ) = n n3

Input size ( )n

Fig. T( ) = O(  ) n n3

Pseudo-code for finding common
elements in pair of sets:

for each set Si of n elements
    for each other set Sj of n elements
      for each element x of Si

  check whether x also belongs to Sj

endfor
if x belongs to both Si and Sj

print “Sj and Sj are not disjoint”
endif
endfor
endfor

Time Complexity: The innermost loop takes
O(n) time because of n elements. The second
inner loop over Sj also takes O(n) iterations around
the innermost loop, and finally O(n) over Si around
Sj iterations. Multiplying all the three iterations we
obtain O(n3 ) time complexity.

www.neerajbooks.com
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5. Polynomial Time: (O (nk)): This running
time is obtained when the search over all subsets
of a set of a size k is performed. To understand
the complexity of running time, we have to find
how many distinct subsets of size k of n elements
of a set can be chosen. For that, we have to take
a combination of n elements taken k at a time.

The brute force method to solve this problem
would require searching for all subsets of k nodes
and for each subset it would examine whether
there is an edge connecting any two nodes for
each subset s of a size k. Below is a pseudo-code
for finding an independent set.

Pseudo-code
for each subset s of a size k in a graph G
check whether s is an independent set
if yes, print “ s is an independent set
else stop
In this case the outer loop will iterate O(nk)

times and it selects all k node subsets of n node
of the graph. In the inner loop within each subset
it loops for each pair of nodes to find out whether
there is an edge between the pair which will require
O(2 out of k) pairs of search i.e.O(k2) search.
Therefore, the total time now is O(k2 nk). Since k
is a constant, it can be dropped, finally it is O(nk ).

T( ) = n nk

Input size ( )n

Fig. T( )n k

6. Exponential Time (O( kn)): The polynomial
time complexity there are other two types of
bounds: Exponential time O(2N) and factorial time
O(n!):

The modified version of the pseudo-code is
presented below.

Pseudo-code:
Input G(V,E)
{

for each subset s of n number of nodes
verify whether s is an independent set

if s is the largest among all the subsets
examined so for
print “s is the largest independent set ”

 endif
endfor
}
end of code fragment
Factorial Time (O(n!)): In comparison to the

growth of exponential running time, the growth of
factorial time (n!) is more rapid. The running time
of this type of complexity arises in two types of
problems:

(i) Matching Type of Problem, for example,
bipartite matching problem. Suppose, there are n
number of boys and n number of girls. To find
perfect matching between n number of boys & n
number of girls, the first boy will be compared with
n numbers of girls .The second boy will be left
with (n-1) choices among girls for comparison.
There will be only (n-2) options for matching for
the third boy, and so forth. After array girls
Multiplying all these options for n boys we obtain
n! ie. n(n–1) (n-2) .......(2) (1)

(ii) O(n!) also occurs where the problem
requires arranging n elements into a particular
order (i.e., a permutation of n numbers). A classic
example is travelling salesman problem.

T( ) = n kn

Input size ( )n

Fig. T( ) = O( )n k n

ANALYSIS & COMPLEXITY OF ALGORITHM
Analysis of algorithms is the determination of

the amount of time and space resources required
to execute it.

The complexity function f(n) for certain cases
are:

1. Best Case: The minimum possible value
of f(n) is called the best case.

2. Average Case: The expected value of f(n).
3. Worst Case: The maximum value of f(n)

for any key possible input.
Average Case: In average case analysis, we

take all possible inputs and calculate computing

www.neerajbooks.com

www.neerajbooks.com


	Sample Chapter Preview.pdf
	Content
	BPSE-144-CBCS-EM-Starting Page
	Content

	preview - sample papers
	1. Sample Question Paper

	Question Paper
	July-22
	Sample Paper-1

	preview - chapters
	2. Chapter

	Book
	Chapter-1

	Question Paper.pdf
	JUNE-2023
	DEC-2022
	JULY-2022
	Question Paper-1
	Question Paper-2

	content.pdf
	BPSE-144-CBCS-EM-Starting Page
	content

	book for preview.pdf
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17

	Question Paper.pdf
	JUNE-2023
	DEC-2022
	MAR-2022
	FEB-2021
	Question Paper 1

	content.pdf
	BPSC-132-EM-Starting Page
	content

	book for preview.pdf
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17

	Question Paper.pdf
	JUNE-2023
	DEC-2022
	MAR-2022
	FEB-2021
	Question Paper 1

	content.pdf
	BPAC-132-HM-Starting Page
	content

	1.pdf
	Chapter-1
	Chapter-2
	Chapter-3
	Chapter-4
	Chapter-5
	Chapter-6
	Chapter-7
	Chapter-8
	Chapter-9
	Chapter-10
	Chapter-11
	Chapter-12
	Chapter-13
	Chapter-14
	Chapter-15
	Chapter-16

	MPCE-31-EM Question Paper.pdf
	MPCE-31-June-2023
	MPCE-31-December-2022
	JULY-2022
	MPCE-31-March-2022

	MPCE-31-EM Content.pdf
	Starting Page MPCE-31-EM
	Content Final eng


	BPAS-186-EM-STARTING AND CONTENT.pdf
	Starting Page 2022 Final
	Content Final eng

	BPAS-186-EM-PAPERS.pdf
	June-2023
	December-2022
	June-2022
	Sample Paper 1

	Sample Question Paper  Preview.pdf
	Content
	BPSE-144-CBCS-EM-Starting Page
	Content

	preview - sample papers
	1. Sample Question Paper

	Question Paper
	July-22
	Sample Paper-1

	preview - chapters
	2. Chapter

	Book
	Chapter-1

	Question Paper.pdf
	JUNE-2023
	DEC-2022
	JULY-2022
	Question Paper-1
	Question Paper-2

	content.pdf
	BPSE-144-CBCS-EM-Starting Page
	content

	book for preview.pdf
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17

	Question Paper.pdf
	JUNE-2023
	DEC-2022
	MAR-2022
	FEB-2021
	Question Paper 1

	content.pdf
	BPSC-132-EM-Starting Page
	content

	book for preview.pdf
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17

	Question Paper.pdf
	JUNE-2023
	DEC-2022
	MAR-2022
	FEB-2021
	Question Paper 1

	content.pdf
	BPAC-132-HM-Starting Page
	content

	1.pdf
	Chapter-1
	Chapter-2
	Chapter-3
	Chapter-4
	Chapter-5
	Chapter-6
	Chapter-7
	Chapter-8
	Chapter-9
	Chapter-10
	Chapter-11
	Chapter-12
	Chapter-13
	Chapter-14
	Chapter-15
	Chapter-16

	MPCE-31-EM Question Paper.pdf
	MPCE-31-June-2023
	MPCE-31-December-2022
	JULY-2022
	MPCE-31-March-2022

	MPCE-31-EM Content.pdf
	Starting Page MPCE-31-EM
	Content Final eng


	MCS-211-EM-Starting page.pdf
	Starting Page MEC-102
	content

	MCS-211-EM-Papers.pdf
	paper 1
	paper 2
	paper 3

	MCS-211-EM-BOOK PDF.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13




