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1Determinants

In algebra, the determinant is a special number
associated with any square matrix. The fundamental
geometric meaning of a determinant is a scale factor
for measure when the matrix is regarded as a linear
transformation. Also, we can say this is the mathematical
objects that are very useful in the analysis and solution
of systems of linear equations.

The linear equation is an algebraic equation in
which each term is either a constant or the product of a
constant and a single variable. Linear equations can
have one or more variables. Various elementary
methods are used to solve these linear equations which
involve two or three variables. But these methods are
not helpful where a large number of equations involve
more than three variables. Thus, few other methods are
involved for such equations; such as Matrices and
Determinants. By the end of this chapter, you will be
able to define a matrix and a determinant, addition and
multiplication of two matrix, obtain the determinant of
a matrix, and compute the inverse of a matrix, Matrices
and Determinants.

DEFINITION

We define the determinant function
det : M

n
(F)  F by induction on n.

When n = 1, det A = det [a] = a

When n = 2, det A = det –
a b

ad bc
c d

 
 

 

When n = 3,

det A =  
11 12 13

21 22 23

31 32 33

a a a

a a a

a a a

= a
11

 det

22 23 21 23 21 22
12 13

32 33 31 33 31 32

– det det
a a a a a a

a a
a a a a a a

Determinant
In double suffix notation, a determinant of order

n is defined as

a a a

a a a

a a a a

n

n

n n n nn

11 12 1

21 22 2

1 2 3

...

...

... .... ... ...

It consists of n rows and n columns. The element
a

11
, a

12
 .... can be real or complex or fraction. The

element a
ij
 belongs to the ith row and jth column. The

elements a
11

, a
22

, a
33

, ...., a
nn

 consisting the leading
diagonal or principal diagonal of the determinant .

Note: A determinant has definite value.
Determinant of a matrix: For any square matrix

of order 2, we have found a necessary and sufficient
condition for invertibility. Indeed, consider the matrix

The matrix A is invertible if and only if . We called
this number the determinant of A. It is clear from this,
that we would like to have a similar result for bigger
matrices (meaning higher orders). So is there a similar

.
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notion of determinant for any square matrix, which
determines whether a square matrix is invertible or not?

In order to generalize such notion to higher orders,
we will need to study the determinant and see what kind
of properties it satisfies. First let us use the following
notation for the determinant.

General Formula for the Determinant Let A be
a square matrix of order n. Write A = (a

ij
), where aij is

the entry on the row number i and the column number j,
for i = 1, ..., n and j = 1,... n. For any i and j, set A

ij
(called the cofactors) to be the determinant of the square
matrix of order (n – 1) obtained from A by removing
the row number i and the column number j multiplied
by (–1)i + j. We have

det(A) =
1

A
j n

ij ij

j

a





for any fixed i, and

det(A) =
1

A
i n

ij ij

i

a





for any fixed j. In other words, we have two type of
formulas: along a row (number i) or along a column
(number j). Any row or any column will do. The trick is
to use a row or a column which has a lot of zeros.

In particular, we have along the rows

a b c

d e f

g h k

 =
e f d f d e

a b c
h k g k g h

 

 or

a b c

d e f

g h k

 =
b c a c a b

d e f
h k g k g h

  

 or

a b c

d e f

g h k

 =
b c a c a b

g h k
e f d f d e

 

As an exercise write the formulas along the
columns.
Minors

If we delete the ith row and jth column in the
determinant D, we get another determinant of (n – 1)th
order called minor of the element a

ij
.

Let us consider a determinant D1 of third order,

D1 =

11 12 13

21 22 23

31 32 33

a a a

a a a

a a a

Let the minors of the elements a a a a11 12 13 33, , 
be denoted by M , M11 12  respectively, then

M11 =
a22 a23
a32 a33

, M12 =
a21 a23
a31 a33

  etc.

Co-factors
The co-factor of an element aij  of a determinant 

is denoted by Aij  and is defined by A (–1) M .i j
ij ij

Cofactors
c

ij
 = (– 1)i + j M

ij
 for any minor M

ij
 of a

ij
 element.

Now we find cofactor of every element of a m × m
matrix, and put in matrix form, viz.,

11 12 1

21 22 2

1 2

...

...
C

... ... ... ...

...

m

m

m m mm

c c c

c c c

c c c

 
 
 
 
  
 

,

known as cofactor matrix, where (i, j)th vector is deleted.
Now adjoin of A, written as Adj A is given by

Adj A = Transpose of cofactor matrix
= Ct

then A–1 =
1

A
Adj AA

where Adj A is the inverse of matrix A, with condition

that A 0 .

We can easily see
A.[Adj(A)] = [Adj(A)]A = det(A).I

A system of linear equations
a

11
x

1
 + a

12
x

2
 + ... + a

1n
x

n
 = b

1
a

21
x

1
 + a

22
x

2
 + ... + a

2n
x

n 
= b

2
................................................
................................................

a
n1

x
1
 + an

2
x

2
 + ... + a

nn
x

n
 = b

n
, can be solved as

follows:

Let A =  
1 1

2 2,X ,Bij n n

n n

x b

a x b

x b


   
       
   
   

then AX = B
 X = A–1B.
Theorem 1: Let A = [a

ij
] then

(a) a
11

c
11

 + a
12

c
12

 + ....... + C
n
 = det (A)

(b) a
ji
C

ji
 + a

j2
C

j2
 + ........ + a

jn
C

jn
 = Det (A).

Hint: For Self Attempt.
Theorem 2: Let A be an n × n matrix over F,

Then
A. (Adj(A)) = (Adj(A)).A = det (A)I.
Proof: Recall matrix multiplication from Unit 7.
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Now

A(Adj(A)) = 

11 12 1

21 22 2

1 2

n

n

n n nn

a a a

a a a

a a a

 
 
 
 
 
 




  


11 21 1

12 22 2

1 2

C C C

C C C

C C C

n

n

n n nn

 
 
 
 
 
 




  


By Theorem 1 we know that a
il
C

il
 + a

i2
 C

i2
 + ......+

a
in
C

in
 = det (A), and a

i1
C

j1
 + a

i2
C

j2
 + .......+ a

in
C

jn
= 0 if i

 j. Therefore,

A(Adj(A))  = 

det(A) 0 0
0 det(A) 0
0 0 0
: : :
0 0 det(A)

 
 
 
 
 
  







det (A) = 

1 0 ... 0

0 1 ... 0

0 0 ... 0

: : ... :

0 0 ... 1

 
 
 
 
 
 
  

 det(A)I.

Theorem 3: Let the matrix equation of a system of
linear equations be

AX = B, where A = [a
ij
]n × n, X = 

1

.

.

n

x

x

 
 
 
 
  

 B = 

1

.

.

n

b

b

 
 
 
 
  

Let the columns of A be C
1
, C

2
,......C

n
. If det(A)

 0, the given system has a unique solution, namely,
x

1
= D

1
/D, ........, x

n
 = D

n
/D, where

D
i

= det (C
1
, ....... C

i–1
, B., C

i+1
, ...., C

n
)

= determinant of the matrix obtained from A
by replacing the ith column of B, and D =
det (A).

Now let us see what happens if B = 0. As we know
that AX = 0 has n – r linearly independent solutions,
where r = rank A. The following theorem tells this
condition in terms of det(A).

Theorem 4: The homogeneous system AX = 0 has
a non-trivial solution if and only if. det (A) = 0.

Proof: First assume that AX = 0 has a non-trivial
solution. Suppose, if possible, that det(A)  0. Then
Cramer’s Rule says that AX = 0 has only the trivial

solution X = 0 (because each D
i
 = 0 in Theorem 3).

This is a contraction to our assumption. Therefore, det
(A) = 0.

Conversely, if det(A) = 0. then A is not invertible.
, the linear mapping A : V

n 
(F)  V

n
(F) : A(X) = AX

is not invertible. , this mapping is not one-one.
Therefore, Ker A  0 that is AX = 0 for some non-

zero X  V
n
(F). Thus, AX = 0 has a non-trivial solution.

Theorem 5: Let X
1
, X

2
, .......... X

n
  V

n
(F). Then

X
1
, X

2
, ...... X

n
 are linearly dependent over the field F if

and only if det (X
1
, X

2
, ....... X

n
) = 0.

Proof: Let U = (X
1
, X

2
, ....... X

n
) be the n × n matrix

whose column vectors are X
1
, X

2
 ....... X

n
. Then X

1
, X

2
,

....., X
n
 are linearly dependent over F if and only if there

exist scalars 
1
, 

2
, ....., 

n
  F not all zero, such that 

1

X
1
 + 

2
X

2
 + ...... + 

n
X

n
 = 0.

Now, 

11

2 2

1 2

αα

α α
U (X ,X ,.......X ). .

. .
α α

n

n n

  
  
  

   
  
  

      
= X

1


1
 + X

2


2
 + ..... + X

n


n
= 

1
X

1
 + 

2
X

2
 + ...... + 

n
X

n
.

Thus, X
1
, X

2
, ........, X

n
 are linearly dependent over

F if and only if UX = 0 for some non zero

X = 

1

2
n

α

α
V (F)

.
α

n

 
 
 
 
  

But this happens if and only if det(U) = 0, by
Theorem 4. Thus, Theorem 6 is proved.

Theorem 5 is equivalent to the statement X
1
, X

2
,

..... X
n
  V

n
(F) are linearly independent if and only if

det (X
1
, X

2
, ..... X

n
)  0.

DETERMINANTS OF ORDER 2 AND 3

Determinant of order 2,  and 3 are written as:

11 12 13
11 12

21 22 23
21 23

31 32 33

and

a a a
a a

a a a
a a

a a a

Where C Vija i, j

Order two

11 12

21 22

a a

a a  = a 11 a 22 – a 12 a 21

2 3

1 2  = 2. 2 – [(– 1). 3] = 4 + 3 = 7
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Example:

3 2

2 8

 
 
 

= (3)(8) – (2)(2)

= 24 – 4 =20
In the second order determinant, we directly

multiply diagonal elements.
Order three

Consider an arbitrary 3 × 3 matrix, A = (a
ij
). The

determinant of A is defined as follows:

A =

11 12 13

21 22 23

31 32 33

a a a

a a a

a a a

a
11

 a
22

 a
33

 + a
12

 a
23 

a 
31

 + a
13

 a
21 

a
32

 –
– a 

13
 a

22
 a

31
 - a

12
 a

21
 a

 33 
- a

11
 a

23
 a

32.
Example:

2 3 4

5 6 7

1 3 2

 
 
 
  

Expanding the determinant along the first row

=
5 7 6 7 6 5

2 3 4
3 2 1 2 1 3

     
            

= 2 (10 + 21) – 3 (12 – 7)  +  4 (– 18  –5)
=  62 – 15 – 92 =  – 45

A =

3 2 1

0 2 5

2 1 4




= 3 · 2 · 4 + 2 · (– 5) · (– 2) + 1 · 0 · 1
– 1 · 2 · (– 2) – 2 · 0 · 4 – 3 · (–5) ·1

= 24 + 20 + 0 – (– 4) – 0 – (–15)
= 44 + 4 + 15 = 63

Note that there are six products, each consisting of
three elements in the matrix. Three of the products
appear with a positive sign (they preserve their sign)
and three with a negative sign (they change their sign).

PROPERTIES OF DETERMINANTS:
EVALUATION OF DETERMINANTS

(1) The value of a determinant remains unchanged
when rows and columns are interchanged.

e.g.

a b c

d e f

g h i

a d g

b e h

c f i



(2) If any two successive rows or columns are
interchanged, then the determinant is
multiplied by (–1).

e.g.  

a b c

d e f

g h i

a b c

g h i

d e f

 

(3) If all the elements of one row or column of a
determinant are multiplied by the same number
(say ), the value of the new determinat is 
times the value of the given determinant

e.g.    






a b c

a b c

a b c

a b c

a b c

a b c

1 1 1

2 2 2

3 3 3

1 1 1

2 2 2

3 3 3



(4)  If all the elements of a row or column of a
determinant are zero, the value of whole
determinant is zero.

(5) If any two rows or columns of a determinant
are identical, the value of determinant is zero.

(6) In a determinant the sum of the products of
the elements of any two row or column with
co-factors of the corresponding elements of
any other row or column is zero.

(7) If, in a determinant each element in any row
or column consists of the sum of two terms,
then the determinant can be expressed as the
sum of two determinants of the same order.

(8) If  the elements of a row of column of a
determinant are added m times the
corresponding elements of another row or
column, the value of the determinant thus
obtained is equal to the value of the original
determinant.

AREA OF TRIANGLES USING
DETERMINANTS

Area of triangle whose vertices are (x1, y1), (x2,
y2), (x3, y3) is given by

 =      1 2 3 2 1 3 3 1 2
1

2
x y y x y y x y y      

... (i)

Now consider the determinant 
1 1

2 2

3 3

1

1

1

x y

x y

x y

 and

expand

= 
2 1 1

1 2 3
3 3 2

1 1 1

1 1 1

y y y
x x x

y y y
 

(expand through the columns)
= x

1
(y

2
 – y

3
) – x

2
(y

1
 – y

3
) + x

3
(y

1
 – y

2
) ... (ii)

Hence area of a triangle having vertices at (x
1
, y

1
),

(x
2
, y

2
) and (x

3
, y

3
) is given by
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