
New Edition

o

SOFTWARE
ENGINEERING

o

S. No. Chapter Page

SOFTWARE
ENGINEERING

S. No. Chapter Page

Sample Preview

of

The Chapter

Published by:

NEERAJ

PUBLICATIONS
www.neerajbooks.com

Neeraj
Publications

The evolution of electronic computers began in
1940s. Early efforts in the field of computing were
focused on designing the hardware, as that was the
challenge, and hardware was where most technical
difficulties existed. In the early computing systems, there
is essentially no operating system and the programs
were fed with paper tapes or by switches. There was a
gradual trend towards isolating the user from the
machine internals, so the user could concentrate on
solving the problem at hand, rather than getting bogged
down with the machine details.

In the period, when higher programming languages
like PASCAL, COBOL came into existence, the use of
these made programming easier. Some of the structural
design practices like top-down approach were
introduced. The concept of quality assurance was also
introduced. However, the business aspects like cost
estimation, time estimation, etc. of the software were in
their elementary stages.

Later on programming team in an organization, full-
fledged software companies evolved. A software
houses primary business is to produce software. As
software houses offered a range of services, including
hiring out of suitably qualified personnel to work within
client’s team, consultancy and a complete system design
and development service. The output of these
companies was Software. They viewed the software as
a product and its functionality as the process. With the
coming of the multiprogramming operating systems, the

usability and efficiency of the computing machines took
a big leap. This is when software became more strategic,
disciplined and commercial.

Now with the advancement of technology, the cost
of hardware is consistently decreasing. On the other
hand, the cost of software is increasing. The main reason
for the high cost of software is that software technology
is still labour-intensive. Software projects are often very
large, involving many people, and span over many
years. The development of these systems is often done
in an ad-hoc manner, resulting in frequent schedule
slippage and cost over runs in software projects. Some
projects are simply abandoned. Customized software
fails because the design fails. If a design fault is detected
in software, changes are usually made to remove that
fault so that it causes no failures in future. Here comes
the need of Software Engineering.

Let us first discuss what is meant by software in
context of software engineering. Software is not merely
a collection of computer programs. There is a distinction
between a program and a programming system product.
A program is generally complete in itself, and is generally
used only by the author of the program. There is usually
little documentation or other aids which can help other
people use the program. Since the author is the user, the
presence of bugs is not a major concern; if the program
crashes, the author will fix the program and start using it
again. These programs are not designed with such big
issues as portability, reliability and usability in mind.

SOFTWARE
ENGINEERING

www.neerajbooks.com

www.neerajbooks.com

www.neerajbooks.com

Neeraj
Publications

However, a programming system product is used
largely by people other than the developers of the
system. The users may be from different backgrounds,
so a proper user interface is provided. There is sufficient
documentation to help these diverse users use the system.
Programs are thoroughly tested before put into operation
use, because users do not have the luxury of fixing bugs
that may be detected. Since the product may be used in
a variety of environments, perhaps on a variety of
hardware, portability is a key issue.

Software is a collection of computer programs,
procedures, rules and associated documentation and
data.

Software Engineering is the systematic approach
to the development, operating, maintenance and
retirement of the software.

Or
Software Engineering is the application of science

and mathematics by which the capabilities of computer
equipments are made useful to the man via computer
programs, procedures, and associated documentation.

The basic goal of software engineering is to produce
high quality software at low cost. The two basic driving
factors are quality and cost. Cost of a completed project
can be calculated easily if proper accounting procedures
are followed. Quality of the software is something not
so easy to qualify and measure.

We can specify three dimensions of the product
whose quality is to be assessed:

1. Product Operations: The first factor of product
operation deals with quality factors such as correctness,
reliability, and efficiency.

(i) Correctness. It is the extent to which a program
satisfies its specifications.

(ii) Reliability. It is the property which defines how
well the software meets its requirements.

(iii) Efficiency. It is a factor in all issues relating to
the execution of software and includes such
considerations as response time, memory
requirements and throughput.

(iv) Usability. It is the effort required to learn and
operate the software properly. Hence it is an
important property that emphasizes the human
aspect of the system.

2. Product Transition: The second factor of
product transition deals with equality factors like
portability and interoperability.

(i) Portability. It is the effort required to transfer
the software from one hardware configuration
to another.

(ii) Reusability. It is the extent to which parts of the
software can be reused in other related
applications.

(iii) Interoperability. It is the effort required to couple
the system with other systems.

3. Product Revision: The product revision is
concerned with those aspects related to modification of
programs and includes factors like maintainability,
flexibility and testability.

(i) Maintainability. It is the effort required to locate
and fix errors in operating programs

(ii) Flexibility. It is the effort required to modify an
operation program (perhaps to enhance its
functionality).

(iii) Testability. It is the effort required to test, to
ensure that the system or a module performs its
intended function.

SOFTWARE PROCESS TECHNOLOGY

When we develop a program or build something,
there are some activities we perform, either explicitly
or implicitly. Suppose that Mr. X, a computer
programmer, buys a car, and wants to write a program
to verify that his car payments are correct. With this
eventual goal, what is the first thing X will do? The first
natural thing to do is to try to understand the problem
better and more precisely. He will identify that the inputs
are the cost of the car, the interest rate, the duration of
the loan, and the monthly payment the car dealer has
told him. The goal is to determine, given these inputs, if
the payment is consistent with the other inputs. Mr. X
may do this problem definition implicitly in his mind
and without realizing it. However, the problem must be
clearly understood by the programmer before he starts
coding.

The next step that X will take is to decide what
course he should follow—should he determine the
payments and then compare, or should he use the
payments as data and determine the rate and check the
rate? What algorithm should he use? In other words,
before he starts coding, he has to plan in his mind about
how to solve the problem. What will he code, if he does
not know what he is trying to code? Again this activity
of deciding a plan for a solution may be done implicitly
by Mr. X perhaps while sitting on the terminal and in
parallel with coding itself. However, a plan for a solution
must be thought of. Once he has coded the plan, he will
try to test and debug it.

From this situation we can say that problem solving
in software must consists of these activities—

www.neerajbooks.com

www.neerajbooks.com

www.neerajbooks.com

Neeraj
Publications

understanding the problem, deciding a plan for a
solution, coding the planned solution, and finally testing
the actual program. For small problems, these activities
may not be done explicitly. The start and end boundaries
of these activities may not be clearly defined and no
written record of the activities may be kept. However,
for large systems where the problem solving activity
may last over a few years, and where many people are
involved in development, performing these activities
implicitly without proper documentation and
representation will clearly not work.

For any software system of a non-trivial nature, each
of the four activities for problem solving listed above
has to be done formally. For large systems, each activity
can be extremely complex and methodologies and
procedures are needed to perform it efficiently and
correctly. Each of these activities is a major task for
large software projects. Furthermore, each of the basic
activities itself may be so large that it cannot be handled
in a single step and must be broken into smaller steps.
For example, design of a large software system is almost
always broken into multiple distinct design phases,
starting from a very high level design specifying only
the components in the system to a detailed design where
the logic of the components is specified. The basic
activities or phases to be performed for developing a
software system are:

REQUIREMENT ANALYSIS
This phase is essential in order to understand the

problem which the software system is to solve. The
problem could be automating an existing manual
process, or developing a completely new automated
system, or a combination of the two. The emphasis is
on identifying what is needed from the system and not
that how the system will achieve its goals. The goal of
this phase is to produce the software requirement
specification document. The requirements document
must specify all functional and performance
requirements, the doormats of inputs, outputs and any
required standards, and all design constraints that exist
due to political, economic, environmental, and security
reasons.

SOFTWARE DESIGN
The purpose of the design phase is to plan a solution

of the problem specified by the requirements document.
In other words, starting with what is needed, design takes
us towards how to satisfy the needs? The design of a
system is perhaps the most critical factor affecting the

quality of the software and has a major impact on the
later phases. The output of this phase is the design
document. The design activity is often divided into two
separate phases:

1. System design: It is sometimes called as top-
level design, as it aims to identify the modules that
should be in the system, the specifications of these
modules, and how they interact with each other to
produce the desired results. A design methodology is a
systematic approach to creating a design by application
of a set of techniques and guidelines. Most methodologies
focus on system design. The two basic principles used
in any design methodology are the problem partitioning
and abstraction.

(i) Partitioning: A large system cannot be handled
as a whole, and so for design it is partitioned
into smaller systems. This partitioning process
can continue further till we reach a stage where
the components are small enough to be designed
separately. This divide and conquer method is
essential for handling large projects and all
design methodologies provide methods to
partition the problem effectively.

(ii) Abstraction: Abstraction is a concept related
to problem partitioning. When is used during
design, the design activity focuses on one part
of the system at a time. Since the part being
designed interacts with other parts of the system,
a clear understanding of the interaction is
essential for properly designing the part. An
abstraction of a system or a part defines the
overall behaviour of the system at an abstract
level without giving the internal details. While
working with a part of the system, a designer
needs to understand only the abstractions of the
other parts with which the part being designed
interacts. The use of abstraction allows the
designer to practice the divide and conquer
technique effectively by focusing on one part at
a time, without worrying about the details of
other parts.

2. Detailed design: The internal logic of each of
the modules specified in system design is decided.
During this phase further details of the data structures
and algorithmic design of each of the modules is
specified. The logic of a module is usually specified in
a high-level design description language, which is
independent of a target language in which the software
will eventually be implemented.

www.neerajbooks.com

www.neerajbooks.com

www.neerajbooks.com

Neeraj
Publications

The design phase ends with verification of the
design. If the design is not specified in some executable
languages, the verification has to be done by evaluating
the design documents. One way of doing this is through
reviews.

CODING

The goal of the coding phase is to translate the
design of the system into code in a given programming
language. For a given design, the aim in this phase is to
implement the design in the best possible manner. The
coding phase affects both testing and maintenance
profoundly. A well written code can reduce the testing
and maintenance effort. Since the testing and
maintenance costs of software are much higher than
the coding cost, the goal of coding should be to reduce
the testing and maintenance effort. An important
concept that helps the understandability of programs is
structured programming. The goal of structured
programming is to linearize the control flow in the
program. The program text should be organized as a
sequence of statements and during execution the
statements are executed in the sequence given in the
program. For structured programming, a few single-
entry-single-exit constructs should be used. These
constructs include selection (if-then-else), iteration
(while-do, repeat-until, etc.). With these constructs it is
possible to construct a program as a sequence of single-
entry-single-exit constructs.

In coding phase, the entire system is not tested
together. Rather the different modules are tested
separately. This testing of modules is called as “Unit-
testing”. The output of these phase is the verified and
unit tested code of different modules.

TESTING

Testing is the major quality control measure
employed during software development. Its basic
function is to detect errors in the software. This phase
has to uncover errors during the coding, but also errors
introduced during the previous phases. The goal of
testing is to uncover requirement, design and coding
errors in the programs. The starting point is off-course
the unit testing, but gradually the modules are integrated
into sub-systems and are then subjected to the
integration testing. After the system is ready, the system
testing is performed. The whole of the system is tested
against the system requirements. Finally, the acceptance

testing is performed to demonstrate to the clients, on
the real life data of the client. For testing to be successful,
proper selection of test cases is essential. There are two
different approaches to selecting test cases—functional
testing and structural testing. In functional testing the
software or the module to be tested is treated as a black
box and the test cases are decided based on the
specifications of the system or the module. In structural
testing the test cases are decided based on the logic of
the module to be tested. A common approach here is to
achieve some type of coverage of the statements in the
code. In structural testing the test cases are decided
based on the logic of the module to be tested. A common
approach here is to achieve some type of coverage of
the statements in the code. One common coverage
criterion is statement coverage which requires that test
cases be selected so that together they execute each
statement at least once.

The following are some guidelines for testing:
(i) Test the modules thoroughly, cover all the

access paths, generate enough data to cover all
the access paths arising from conditions.

(ii) Test the modules by deliberately passing wrong
data.

(iii) Specifically create data for conditional state-
ments. Enter data in test file which would satisfy
the condition and again test the script.

(iv) Test for locking by invoking multiple concurrent
processes.

The following objectives are to be kept in mind
while performing testing:

(i) It should be done with the intention of finding
errors.

(ii) Good test cases should be designed which have
a portability of finding, as yet undiscovered
error.

(iii) A success test is one that uncovers yet un-
discovered error(s).

The following are some of the principles of testing:
(i) All tests should be performed according to user

requirements.
(ii) Planning of tests should be done long before

testing.
(iii) Starting with a small test, it should proceed

towards large tests.

www.neerajbooks.com

www.neerajbooks.com

www.neerajbooks.com

	book - Copy.pdf
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12

